علوم سال سوم راهنمایی

پيوند ميان اتم ها

شايد از خود پرسيده باشيد كه چرا دستتان در آب فرو مي رود اما در يخ فرو نمي رود؟ چرا بنزين فرار است اما قير چنين نيست؟ چرا از تركيب سديم و كلر جسم سخت نمك طعام اما از تركيب اكسيژن و ئيدروژن آب حاصل مي شود؟
پاسخ اينگونه سوالات را در پيوند بين اتمها جستجو كنيد.

+ نوشته شده در  شنبه 10 دی1390ساعت 4:36 قبل از ظهر  توسط زهرا مختاری  | 

فرمول شيميايي

از كنارهم قرار گرفتن نمادهاي شيميايي فرمول شيميايي حاصل مي شود.
مثلا H2 فرمول شيميايي ئيدروژن، O2 فرمول شيميايي اكسيژن، H2O فرمول شيميايي آب، CH4 فرمول شيميايي گاز شهري (گاز متان) و C12H22O11 فرمول شيميايي شكر است.

مثلا H2SO4 فرمول شيميايي سولفوريك اسيد است. اين فرمول نشان مي دهد كه اين ماده از سه عنصر ئيدروژن، گوگرد و اكسيژن تشكيل شده است و در هر مولكول آن دو اتم ئيدروژن،يك اتم گوگرد و چهار اتم اكسيژن وجود دارد.

+ نوشته شده در  شنبه 10 دی1390ساعت 4:34 قبل از ظهر  توسط زهرا مختاری  | 

عناصر رادیو اکتیو

                                     

توریم و اورانیوم و بعضی از عناصر دیگر بدون هیچ اثر خارجی (یعنی به سبب عوامل داخلی) پیوسته تابش مرئی گسیل می دارند. این تابش مانند اشعه ایکس به درون حائل های کدر نفوذ می کند. و روی فیلمهای عکاسی اثر می گذارد. و اثر یونشی به وجود می آورد.

ویژگی گسیل خود به خودی چنین تابش به پرتوزایی معروف است به عناصر دارای این ویژگی عناصر رادیو اکتیو می گویند و تابشی که این عناصر گسیل می دارند تابش پرتوزایی (تشعشع هسته ای) نامیده می شود. خاصیت پرتوزایی اورانیم را در سال 1896 آنتوان هانری بکرل فیزیکدان فرانسوی کشف کرد. پرتوزایی اندکی پس از کشف اشعه ایکس کشف شد.

ردیاب تشعشعات هسته ای

عناصر رادیو اکتیو محصول آزمایشات اولیه:

گسیل پرتوهای ایکس اولین بار در بمباران دیواره های شیشه ای لامپ تخلیه گازی با پرتوی کاتدی کشف شد. موثرترین نتیجه این بمباران تابانی شدید شیشه به رنگ سبز یعنی لیانی است. از اینجا معلوم می شود پرتوهای ایکس حاصل لیانی است و با هر لیانی همراهند، از جمله موردی که با نور برانگیخته شود.

بکرل این فرض را از راه آزمایش تحقیق کرد او مواد لیان را در معرض نور قرار داد و آن گاه این مواد را کنار فیلم عکاسی که در لفاف سیاه پیچیده شده بود، قرارداد. پس از ظاهر کردن فیلم عکاسی گسیل تابش نفوذی را از روی سیاه شدن فیلم آشکار ساخت.
از میان تمام مواد لیان که توسط بکرل مورد آزمایش قرارگرفت فقط نمکهای اورانیوم صفحه عکاسی را سیاه کردند.

با وجود این معلوم شد که نمونه ای که قبلا در معرض تابش نور شدید قرارگرفته باشد به همان اندازه نمونه ای که برانگیخته نشده باشد، صفحه عکاسی را سیاه می کند. از این مشاهده چنین استنباط می شود که گسیل تابش توسط نمک اورانیم به لیانی مربوط نیست و به اثرهای خارجی بستگی ندارد. این نتیجه با آزمایش هایی که با ترکیبهای محتوی غیر لیان که همه تابش نفوذ کننده گسیل می دارند انجام شد و مورد تایید قرارگرفت.

سیر تحولی و رشد:

بعد از کشف خاصیت پرتوزایی اورانیوم توسط بکرل ، ماری کوری فیزیکدان فرانسوی متولد لهستان که بیشترین تحقیقات خود را همراه با شوهرش پیر کوری انجام داد بیشتر عناصر شناخته شده و خیلی از ترکیبها را مورد بررسی قرارداد. تا ببیند که آیا آنها خاصیت پرتوزایی دارند یا خیر. ماری کوری در آزمایشهایش یونش هوا را به عنوان شاخص خاصیت پرتوزایی مواد پرتو زا به کار می برد. این روش خیلی حساستر از روش مبتنی بر تاثیر روی صفحه عکاسی است. آزمایشهای ماری کوری به نتایج زیرمنتهی شد.

نتایج آزمایشات ماری کوری:

پرتوزایی نه فقط در اورانیوم بلکه در همه ترکیبات شیمیایی آن مشاهده می شود. افزون بر آن خواص پرتوزایی در مورد توریم و همه ترکیبات شیمیایی آن نیز وجوددارد.

پرتوزایی نمونه ای از هر ترکیب شیمیایی اورانیوم و توریم برابر است با پرتوزایی اورانیم و توریم خالص موجود در آن ترکیب نتیجه اخیر نشان می دهد که خواص مولکول موجود در عنصر پرتوزا روی خاصیت پرتوزایی موثرنیست. بنابر این پرتوزایی خاصیت ذاتی اتمهای عنصرپرتو زا است نه پدیده مولکولی.

علاوه بر عناصر خالص و ترکیبات آنها ماری کوری تعدادی از سنگهای معدنی را نیز بررسی کرد. و معلوم شد که پرتوزایی کانیها از حضور اورانیم و توریم در آنها ناشی می شود با وجود این خاصیت پرتوزایی بعضی از کانیها به طور غیر قابل انتظار خیلی بالاست. برای مثال پیچ بلند چهار برابر مقدار اورانیم موجود در خود یونش نشان می دهد.

پرتوزایی بالای پیچ بلند را فقط می شد به عنصر پرتوزای ناشناخته موجود در این مقدار کم نسبت داد که تحلیل شیمیایی نتوانسته بود وجود آن را آشکار سازد. به رغم مقدار کم آن شار تابشی که این عنصرگسیل می کرد، قویتر از اورانیم موجود در یک مقدار بزرگتر بود.

بنابراین پرتوزایی این عنصر باید چند برابر شدیدتر از پرتوزایی اوارنیم باشد. در نتیجه این ملاحظات ، پیر و ماری کوری کوشش کردند این عنصر فرضی را به طور شیمیایی از پیچ بلند جدا کنند. پرتوزایی به ازای واحد جرم محصول نهایی نشانه ای از توفیق در عملیات شیمیایی بود. این مقدار باید با افزایش مقدار عنصر جدید در محصول نهایی افزایش می یافت.

پس از سالها کار سخت آنها سرانجام توفیق یافتند چند دهم از عنصرخالص به دست آورند که خاصیت پرتوزایی آن بیش از میلیون برابر اورانیوم بود. این عنصر به رادیوم یعنی تابان معروف است.

عنصر رادیواکتیو رادیوم:

رادیم بنا به خواص شیمیایی آن یک فلز قلیایی خاکی است. برای جرم اتمی آن عدد 226 به دست آمد با توجه به خواص شیمیایی و جرم رادیوم در خانه خالی 88 جدول تناوبی قرارداده شد.

در سنگهای معدنی اورانیم همیشه رادیوم به مقدار خیلی کم وجود دارد (حدود 1 گرم رادیوم در 3 تن اورانیوم). به این سبب استخراج رادیوم فرایند پرزحمتی است.

رادیوم یکی از فلزات کمیاب و بسیار گرانبهاست. و به عنوان چشمه متمرکز تابش پرتوزا ارزش زیادی دارد.

سایر عناصر رادیواکتیو:

تحقیقات بعدی که توسط کوریها و دیگر دانشمندان انجام گرفت شمار عناصر پرتوزای شناخته شده را به مقدار زیادی افزایش داده است. معلوم شده است که تمام عناصری که عدد اتمی آنها بیش از 83 باشد، پرتوزا هستند. معمولا این عناصر را به مقدار کم از آمیزه های اورانیوم ، رادیوم و توریم به دست آوردند.


ایزوتوپهای پرتوزای تالیم ، سرب و بیسموت نیز از طریق مشابه پیدا شدند. باید توجه داشت که فقط ایزوتوپهای کمیاب این عناصر که با اورانیم ، رادیم و توریم آمیخته باشند، پرتوزا هستند. تالیم ، سرب و بیسموت معمولی پرتوزا نیستند. افزون برعناصر آخر جدول تناوبی ، معلوم شده است که ساماریوم ، سزیم و روبیدیوم نیز پرتوزا هستند. پرتوزایی این عناصر ضعیف و با زحمت آشکارسازی می شود.

+ نوشته شده در  جمعه 11 آذر1390ساعت 5:2 قبل از ظهر  توسط زهرا مختاری  | 

زباله‌های رادیواکتیو

مشکل مربوط به راکتورهای شکافتی آن است که از انرژی آنها برق تولید می‌شود. مقدار زیادی انرژی به صورت زباله‌های رادیواکتیو باقی می‌ماند. در استفاده مجددا از عناصر سوختی ، مقداری زیاد و خطرناک از انواع عناصر رادیواکتیو باقی می‌ماند. وجود زباله‌های واجد تابش بسیار ، یکی از خطرات همیشگی برای زندگی بشر امروزی به شمار می‌آید. می‌توان در ظرف فولادی ضدزنگ این زباله‌ها را به مایع تبدیل کرد. اما چون اتم‌های انرژی‌دار آنها گرما ایجاد می‌کنند، از این رو یک سیستم خنک کننده دائمی ضرورت پیدا می‌کند. گازهایی نیز تولید می‌شوند که در صورت نشت خطرناک هستند.

روش های دفن زباله های هسته ای:

می‌توان زباله‌ها را در تابوتهایی در اعماق اقیانوسها دفن کرد. اما این خطر وجود دارد که بر اثر فعالیتهای شدید دریایی از آنجا فرار کرده یا شکسته شوند.

می‌توان زباله‌های هسته‌ای را توسط موشک در درون فضا پخش کرد. اما این عمل هم با اعتراضاتی مواجه شد، و نیز شبهه‌هایی وجود دارد که در صورت شکست پرتاب موشک‌ها ، امکان آلودگی کره زمین وجود دارد.

 

استفاده از نشت هیدرولیکی روش دیگر می‌باشد. یعنی حفره‌هایی در سنگ‌ها ایجاد کرد. و با استفاده از فشار هیدرولیکی سنگ رسی را به صورت افقی قطع می‌کنند. سپس زباله‌های رادیواکتیو مانند لایه‌ای در داخل ساندویچی در داخل مایع سیمانی پخش می‌شوند.

یکی دیگر از پیشنهادهای محتمل ، استفاده از معدن نمک است. دفع نهایی به هر طریق که صورت گیرد، روش آماده سازی برتر زباله‌ها این است که آنها را در سرامیکهایی که عناصر رادیواکتیو از آنها قابل نشت هستند، به صورت متبلور در آورند.

مقایسه ی زباله های هسته ای با مواد انفجاری بزرگ:

نکته جالب در این است که بشر با زباله‌های هسته‌ای حاصل از شکافت هسته‌ای ، به گونه‌ای برخورد می‌کند که با فرآورده های حاصل از مهبانگ رفتار شد. در حدود 4.5 میلیارد سال قبل ، در یک بازوی مارپیچ نزدیک به لبه کهکشان راه شیری ، تشکیل منظومه شمسی ما آغاز شد. ستاره مورد نظر خورشید ، تشکیل گردید و در اطراف آن گلوله برفیهای مواد شکل گرفته ، با یکدیگر برخورد نمودند و در هم تلفیق شدند، تا اینکه برخی از آنها سیاره زمین را درست کردند. تعدادی از آن مواد زباله هسته‌ای رادیواکتیو مهبانگ بود که در سنگهای ستاره ما قرار داده شد. انسان معدن قابل شکافت را از آن سنگها استخراج کرده و مورد استفاده قرار داد. در حال حاضر انسان نمی‌داند چگونه آنها را به زمین باز گرداند.

+ نوشته شده در  جمعه 11 آذر1390ساعت 4:56 قبل از ظهر  توسط زهرا مختاری  | 

راکتور

راکتور هسته‌ای:

واکنشگاه هسته‌ای یا رآکتور اتمی دستگاهی برای انجام واکنشهای هسته‌ای بصورت تنظیم شده و تحت کنترل است. این دستگاه در اندازه‌های آزمایشگاهی، برای تولید ایزوتوپهای ویژه مواد پرتوزا (رادیواکتیو) و همینطور پرتوداروها برای مصارف پزشکی و آزمایشگاهی، و در اندازه‌های صنعتی برای تولید برق ساخته می‌شوند.

تاریخچه:

اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر ۱۹۴۲ بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.


ساختمان راکتور:

با وجود تنوع در راکتورها، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت، پوشش برای سوخت، کند کننده نوترونهای حاصله از شکافت، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

سوخت هسته‌ای:

سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. ۲۳۲Th ، ۲۳۳U ، ۲۳۵U ، ۲۳۸U ، ۲۳۹Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است. در کنار قابلیت شکافت، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن، ساخت راحت، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.

غلاف سوخت راکتور:

سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

مواد کند کننده نوترون:

یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن، دوتریم، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن، به شکل آب و آب سنگین و کربن، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

آب سنگین در بعضی از انواع رآکتورهای هسته‌ای نیز به عنوان کند کننده نوترون به کار می‌رود. نوترون‌های کند می‌توانند با اورانیوم واکنش بدهند.از آب سبک یا آب معمولی هم می‌توان به عنوان کند کننده استفاده کرد، اما از آنجایی که آب سبک نوترون‌های حرارتی را هم جذب می‌کنند، رآکتورهای آب سبک باید اورانیوم غنی شده اورانیوم با خلوص زیاد استفاده کنند، اما رآکتور آب سنگین می‌تواند از اورانیوم معمولی یا غنی نشده هم استفاده کند، به همین دلیل تولید آب سنگین به بحث‌های مربوط به جلوگیری از توسعه سلاح‌های هسته‌ای مربوط است. رآکتورهای تولید آب سنگین را می‌توان به گونه‌ای ساخت که بدون نیاز به تجهیزات غنی سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل کند. البته برای استفاده از اورانیوم معمولی در بمب اتمی می‌توان از روش‌های دیگری هم استفاده کرد. کشورهای هند، اسرائیل، پاکستان، کره شمالی، روسیه و آمریکا از رآکتورهای تولید آب سنگین برای تولید بمب اتمی استفاده کردند.با توجه به امکان استفاده از آب سنگین در ساخت سلاح هسته‌ای، در بسیاری از کشورها دولت تولید یا خرید و فروش مقدار زیاد این ماده را کنترل می‌کند. اما در کشورهایی مثل آمریکا و کانادا می‌توان مقدار غیر صنعتی یعنی در حد گرم و کیلوگرم را بدون هیچ گونه مجوز خاصی از تولید کنندگان یا عرضه کنندگان مواد شیمیایی تهیه کرد. هم اکنون قیمت هر کیلوگرم آب سنگین با خلوص ۹۸۹۹ درصد حدود ۶۰۰ تا ۷۰۰ دلار است. گفتنی است بدون استفاده از اورانیوم غنی شده و آب سنگین هم می‌توان رآکتور تولید پلوتونیوم ساخت. کافی است که از کربن فوق العاده خالص به عنوان کند کننده استفاده شود از آنجایی که نازی‌ها از کربن ناخالص استفاده می‌کردند، متوجه این نکته نشدند در حقیقت از اولین رآکتور اتمی آزمایشی آمریکا سال ۱۹۴۲ و پروژه منهتن که پلوتونیوم آزمایش ترینیتی و بمب مشهور «FAT MAN» را ساخت، از اورانیوم غنی شده یا آب سنگین استفاده نمی‌شد.

خنک کننده‌ها:

گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده‌است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.

مواد کنترل کننده شکافت:

برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

انواع راکتورها:

دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می‌گیرند.

بر حسب نوع فرآیند شکافت، راکتورها به اقسام حرارتی، ریع و میانی (واسطه)، و بر حسب مصرف سوخت به راکتورهای سوزاننده، مبدل و زاینده، و بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی، راکتورهای اورانیوم غنی شده با ۲۳۵U (راکتور مخلوطی Be)، و نیز بر حسب خنک کننده به راکتورهای گاز (CO۲مایع (آب، فلز)، و بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

راکتورهای آب سنگین و آب سبک:

راکتورهای آب سبک با آب معمولی کار می‌کنند هیدورژن آب معمولی از یک پروتون تشکیل شده‌است اما در هیدروژن آب سنگین یک پروتون و یک نوترون وجود دارد برای راکتورهای آب سبک به اورانیوم غنی‌شده نیاز داریم اما در راکتور آب سنگین از اورانیوم معمولی می‌شود استفاده کرد به این ترتیب در عمل استفاده از راکتور آب سنگین نتیجه‌ای شبیه به غنی‌سازی اورانیوم خواهد داشت.

کاربردهای راکتورهای هسته‌ای:

راکتورها انواع مختلف دارند برخی از آنها در تحقیقات، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

+ نوشته شده در  جمعه 11 آذر1390ساعت 4:38 قبل از ظهر  توسط زهرا مختاری  | 

زوال رادیو اکتیو

وضع اتم های عناصر رادیواکتیو پس از صدور ذره آلفا ، ذره بتا و اشعه گاما چه می شود دانشمندان ثابت کرده اند که هسته اتم ها در اثر این تشعشع تغییر کرده و به هسته اتم عنصر دیگر تبدیل می شود به این پدیده زوال یا نابودی رادیواکتیو نام نهاده اند.

هر اتم رادیو اکتیو دیر یا زود از بین می رود. و به اتم دیگری تبدیل می شود. اما طول عمر اتم های یک عنصر برای همه آنها یکسان نیست. بعضی به سرعت تجزیه می شوند در حالیکه برخی دیگر مدت ها بدون تغییر می مانند پیش بینی و پیش گویی اینکه یک اتم بخصو ص درچه لحظه معینی زوال خواهد یافت غیر ممکن است همچنین سرعت زوال رادیو اکتیو برای تمام عناصر یکسان نیست و از چند میکرو ثانیه تا میلیون ها سال فرق می کند.

ثابت شده است که در یک عنصر رادیو اکتیو در هر لحظه تعداد اتم هایی که تجزیه می شوند با تعداد اتم های موجود متناسب است یعنی تعداد اتم هایی که از یک مقدار معینی عنصر رادیواکتیو در واحد زمان زوال می یابند کاملاً مشخص است این موضوع به کمک تجربه بدین شکل به اثبات رسید که مشاهده نمودند که تغییرات شدت تشعشع یک جسم رادیو اکتیو تابعی از زمان است نسبت بین اتم هایی که از یک عنصر رادیو اکتیو در واحد زمان تجزیه می شود به همه اتم های آن نسبت ثابت زوال یا Decay Constant نامند.


این نسبت برای ایزوتوپ هر عنصر مقدار معینی است و از مشخصات مهم و تغییر نا پذیر آن ایزوتوپ بشمار می رود مثلاً اگر 8 میلیون اتمی که نسبت ثابت زوال آن 0.1 است داشته باشیم مشاهده خواهیم کرد که در هر ثانیه یک دهم آن تجزیه می شود یعنی در ثانیه اول 800 هزار اتم و در ثانیه دوم از 7200 هزار اتم باقی مانده 720 هزار و همین طور الی آخر.

نیم عمر:

تعداد اتم های یک عنصر رادیو اکتیو بطور مداوم کم می شود و چون نسبت زوال ثابت است و به تعداد اتم های موجود بستگی دارد بنابر این اتم هایی که در هر لحظه بعد زوال می یابند کمتر می شوند معمولازندگانی یک عنصر رادیو اکتیو را بر حسب نیم عمر آن حساب می کنند .



نیم عمر یک عنصر رادیو اکتیو عبارتست از زمانی که طول می کشد تا نصف اتم های موجود آن زوال پیدا کرده و خاصیت رادیو اکتیویته خود را از دست بدهد .

نیم عمر رادیوم 22 سال است و برای اورانیوم 238 ،4500 میلیون سال می باشد یعنی از حالا تا4500 میلیون سال دیگر وقت لازم است تا نیمی ازعنصر اورانیوم طبیعت زوال پیدا کرده و تبدیل به عنصر سرب شود نیم عمر عنصر پلوتنیوم فقط 3 میکروثانیه طول می کشد.

قانون جابه جا شدن عناصر رادیواکتیو یا قانون سودی:

هنگامی که یک عنصر رادیو اکتیو یک ذره آلفا ساتع می کند بار هسته آن 2 واحد و جرم هسته آن 4 واحد کم می شود زیرا بار ذره آلفا برابر 2 و جرمش برابر 4 است و عنصر حاصله درجدول دوره ای دو خانه به سمت چپ حرکت خواهد کرد مثلا اگر رادیوم که خانه 88 جدول را اشغال کرده یک ذره آلفا منتشر کند، به رادن (Radon) که یک گاز رادیواکتیو است و خانه 86 را اشغال کرده تبدیل می شود .

ذرات بتا نظیر ذرات آلفا محصول تجزیه هسته اتم های رادیواکتیو هستند ، آنها از تبدیل
نوترون به پروتون بدست می آیند (یک نوترون در اثر واپاشی پرتو زا به یک ذره بتا و یک پروتون تبدیل می شود).


هنگام صدور ذره بتا بار هسته اتم یک واحد افزوده می شود لذا این عنصر در جدول دوره ای یک خانه به طرف راست حرکت می کند در بیشتر حالات تجزیه هایی که منجر به صدور ذرات آلفا و بتا می شوند با
اشعه گاما همراه هستند .

تشعشع گاما سبب سقوط انرژی هسته ای می گردد اما هیچ تغییری در ساختمان آن بوجود نمی آورد قانون اخیر به نام دانشمندی که اولین بار آنرا یافته است به نام قانون سودی نیز نامیده شده است.

+ نوشته شده در  جمعه 11 آذر1390ساعت 4:37 قبل از ظهر  توسط زهرا مختاری  | 

نوترون

تاریخچه:

از آنجا که اتمها از نظر الکتریکی خنثی هستند، تعداد الکترونها و پروتونها در هر اتم بایستی برابر باشند. برای توجیه جرم کل اتمها ، ارنست رادرفورد در 1920 وجود ذراتی بدون بار را در هسته اتم مسلم دانست. چون این ذرات بدون بارند، تشخیص و تعیین خواص آنها مشکل است. ولی در 1932 جیمز چادویک نتیجه کارهای خود را درباره اثبات وجود این ذرات که نوترون (از واژه لاتین به معنای خنثی) نامیده می شوند، منتشر کرد.

 
او توانست با استفاده از داده های به دست آمده بعضی از واکنش های هسته ای مولد نوترون جرم نوترون را محاسبه کند. چادویک با در نظر گرفتن جرم و انرژی تمامی ذراتی که در این واکنشها مصرف و تولید می شوند، جرم نوترون را محاسبه کرد. جرم نوترون 24-10×6749/1 g است که اندکی بیش از جرم پروتون (24-10×6726/1 گرم) می باشد.

تجمع بیشتر جرم اتم که به دلیل وجود جرم بالای نوترون روتون

معادله ی واکنش نوترونی:

گسیل نوترون برای اولین بار در سال 1932 در ضمن بمباران بریلیم با ذرات ‏آشکار شد در نتیجه گیراندازی ذره آلفا توسط هسته بریلیم هسته کربن ‏تشکیل و نوترون گسیل شد. بعدها شمار زیادی ‏واکنش های هسته ای کشف شد که نوترون آزاد می کردند. ‏

انواع نوترون:

نوترونهای سرد

نوترونهای کند( نوترونهای حرارتی)

نوترونهای تند( نوترونهای سریع)

نوترونهای فوق سریع( نوترونهای نسبیتی)

 

انرژی جنبشی در نوترونهای تند

چشمه ی تولید نوترون:

برای به دست آوردن نوترون مثل سابق واکنش ذره آلفا با بریلیم معمول ‏است. حتی اکنون نیز آمپولهای محتوی آمیزه ای از ماده پرتوزای آلفا و گرد ‏بریلیم به عنوان چشمه تراکم نوترون به کار می رود. چنین چشمه نوترونی ‏را در نزدیکی اتاقک ابر ویلسون در حال کار قرار می دهیم که در آن لایه ‏نازکی از ماده محتوی هیدروژن مثلاً پارافین قراردارد.

اتاقک ابر ویلسون


روی عکسی که از این اتاقک گرفته شود ردهایی مشاهده می شود که از ‏این لایه خارج می شوند چنان که می توان از روی جنس یونش پی برد که ‏اینها ردهای پروتون هستند. تمام ردها به طرف جلو هستند. آنها با پرتونهایی ‏ایجاد شده اند که به علت برخورد نوترونهای تند گسیل شده از چشمه از ‏لایه خارج شده اند. خود نوترونها که از اتاقک می گذرند ردی ندارند.

بنابر این ، نوترونها یونش ‏قابل ملاحظه ای تولید نمی کنند، یعنی برخلاف ذرات باردار آنها با الکترونها ‏عملاً اندر کنش ندارند. نوترونها با گذر از میان ماده فقط با هسته های اتمی ‏اندرکنش می کنند. ولی نظر به اینکه اندازه هسته ها خیلی کوچک است، ‏برخورد نوترونها با آنها خیلی به ندرت صورت می گیرد.

+ نوشته شده در  جمعه 11 آذر1390ساعت 4:36 قبل از ظهر  توسط زهرا مختاری  | 

انواع راکتورهای هسته ای

راکتور هار حرارتی:

راکتور های هسته ای به دو دسته تقسیم می شوند:

۱.راکتورحرارتی کند کننده و خنک کننده با آب

۲.راکتور حرارتی با خنک کننده گازی AGR
در راکتورهای حرارتی از نوترون کند شده که نوترون حرارتی نامیده می شود، برای شکافت هسته‌ای استفاده می شود اما در راکتورهای تند از نوترون سریع استفاده می شود.

در شکافت اورانیوم 235 نوترون کند یا حرارتی در اثر واکنش 2 الی 3 تا نوترون سریع ایجاد می شود. حتما این نوترون های سریع باید کند شوند. بنابراین درراکتورهای حرارتی از کند کننده و خنک کننده استفاده می شود در حالی که در راکتورهای سریع ماده کندکننده لاز
م نیست اما ماده خنک کننده لازم است.

در راکتورهای
PWR و BWR
کند کننده و خنک کننده آب می باشد یک تیپ از راکتورهای کانادایی وجود دارد که در آن از آب سنگین یا دوتریوم استفاده می شود در عوض از اورانیوم غنی شده 1درصد استفاده می شود.
در راکتور
AGR
کند کننده زغال و خنک کننده گاز می باشد. در این راکتور نوترون ها با یک برخورد کند نمی شوند بلکه ممکن است بارها برخورد کنند تا کند شوند. برای تولید 1000 مگا وات انرژی روزانه حدود 1 کیلوگرم اورانیوم 235 مصرف می شود.

راکتور های سریع:

راکتور های سریع به دو دسته تقسیم می شوند:

۱.راکتورهای سریع LMFR

۲.راکتورهای سریع BFR

 

راکتورهای LMFR :

در راکتورهای LMFR ماده کند کننده لازم نیست ولی خنک کننده فلز مذاب سدیم است. در این راکتور پلوتنیوم 239 به عنوان سوخت استفاده می شود و خیلی پیشرفته است.

راکتورهایBFR:

در راکتورهای BFR اورانیوم238 به عنوان سوخت استفاده می شوددر واقع در این راکتور هدف تولید پلوتنیوم یا اورانیوم 233 است از اورانیوم طبیعی در اطراف راکتور یک لایه می گذارند برای اینکه هم حفاظ باشد و هم در اثر برخورد نوترون های سریع به اورانیوم آن را به پلوتنیوم تبدیل کند که پس از مدتی دیواره ها را خراب کرده و پلوتنیوم را استخراج می کنند.

پلوتونیوم تولید شده برای مصارف صنعتی یا بمب های هسته ای یا به عنوان سوخت نیروگاههای هسته ای بکار می رود.که ماده ای خیلی گران قیمت و با ارزش می باشد، با این حال خیلی خطرناک هم هست.

+ نوشته شده در  جمعه 11 آذر1390ساعت 4:36 قبل از ظهر  توسط زهرا مختاری  | 

پروتون

اگر یک یا چند الکترون از یک اتم خنثی جدا شود ، باقی مانده که یون (از واژه یونانی به معنی رفتن) نامیده می شود ، دارای باری مساوی با مجموع بار الکترونهای جداشده از آن اتم ، ولی با علامت مخالف، خواهد بود. وقتی که سبکترین اتمها یعنی هیدروژن ، تنها الکترونش را از دست می دهد ، یون تولید شده یک ذره بنیادی است که پروتون (از واژه یونانی به معنی نخستین) نام دارد.

جرم پرتون 1836 برابر جرم الکترون و بار مثبت آن از لحاظ بزرگی برابر با بار منفی الکترون است.

دریک لوله تخلیه الکتریکی ، اشعه کاتدی بر اثر برخورد با اتمهای گاز درون لوله، الکترونهای آنها را جدا کرده، یونهایی با بار مثبت ایجاد می کنند.این یونها به علت مثیت بودن در جهتی خلاف جهت حرکت اشعه کاتدی (که بار منفی دارند) حرکت می کنند، یعنی از قطب مثبت دور و به قطب منفی نزدیک می شوند.بسیاری از این یونها با جذب الکترون (از اشعه کاتدی) مجددا به اتمهای خنثی تبدیل می شوند. ولی بعضی از آنها به کاتد می رسند و اگر کاتد سوراخی داشته باشد، از آن عبور می کنند. این جریان یونهای مثبت که اشعه مثبت یا اشعه کانالی نامیده می شوند، نخستین بار توسط یوجین گلدشتاین در 1886 مشاهده شد.

انحراف اشعه مثبت در میدان الکتریکی و مغناطیسی توسط ویلهم وین (1898) و جی.جی.تامسون (1906) مورد مطالعه قرار گرفت و مقادیر e/m برای یونهای مثبت، که این اشعه را تشکیل می دهند، معین شد.

یونهای تشکیل دهنده این اشعه همیشه یکسان نبوده ، بلکه به نوع گاز درون لوله تخلیه بستگی دارند.
مقدار e/m رای یک بار مثبت به بار یون (که متناسب است با تعداد الکترونهایی که اتم برای تشکیل یون از دست می دهد) و به جرم یون مورد مطالعه بستگی دارد. برای یونهایی که بار مساوی دارند، هنگامی که جرم یون نسبتا کوچک است، مقدار e/m نسبتا بزرگ است. e/m
برای آنها بزرگترین مقدار مشاهده شده برای یونهای مثبت است. این یونها که همان پروتونها هستند، کمترین جرم مشاهده شده برای یک یون مثبت را دارند. چون بار مثبت پروتون برابر یک واحد بار مثبت است، پس جرم پروتون را می توان از مقدار e/m آن محاسبه کرد.

+ نوشته شده در  سه شنبه 1 آذر1390ساعت 2:49 بعد از ظهر  توسط زهرا مختاری  | 

پوزیترون

تاریخچه ی کشف پوزیترون:

اولین نشانه های وجود پوزیترون یعنی ذره سبکی که تنها اختلاف آن با ‏الکترون در علامت بار است در سال 1932 به کمک اتاقک ابر ویلسون به ‏دست آمد. در اتاقک ابر ویلسون واقع در میدان مغناطیسی رد باریکی که ‏به طور آشکار مربوط به یک ذره تک بار و خیلی سبک همانند الکترون بود، ‏مشاهده شد. اما در جهتی متناظر با بار مثبت منحرف می شد.

خواص پوزیترون و نحوه ی شناسایی:

بعدها ثابت شد که فرایند عمده برای تشکیل پوزیتونها عبارتند از پرتوزایی ‏مصنوعی و اندرکنش اشعه های گامای پرانرژی وابسته به آنها با هسته ‏های اتمی ، یکی از این فرایند ها را می توان با قراردادن اتاقک ابر ‏ویلسون در میدان و تاباندن باریکه نازک تابش بر آن بررسی کرد. در بعضی عکسها در مسیر باریکه تابش گاما رد دوگانه خاصی دیده می ‏شود.

 ذرات باردار متحرک در گاز با یونیدن اتمهای گازدار انرژی از دست می ‏دهد و در نتیجه پیوسته از سرعتش کاسته می شود. آزمون کامل این رد ‏آشکار می کند که خمیدگی هر شاخه آن با افزایش فاصله از پیچیدگی رد ‏تیز تر می شود. ‏این پدیده به این معناست که ما با ردهایی از جفت ذره خارج شونده از ‏یک نقطه سروکار داریم نه رد خم شده یک ذره. تنها با داوری از روی درجه ‏یونش هر دو رد به رد الکترون ها می مانند.
این ردها که معرف جفت ذرات ‏اخیر هستند در میدان مغناطیسی و در جهت های مختلف خم شده اند. ‏یعنی به ذره هایی باردار تعلق دارند.‏ با استفاده از مواد پرتوزا به عنوان چشمه های غنی پوزیترون مطالعه ‏جزئیات خواص این مواد ممکن شده است. به ویژه ثابت شده است که ‏جرم پوزیترون دقیقا با جرم الکترون برابر یعنی حدود 2000/1 جرم پروتون ‏است.‏

انفعالات پوزیترونی:

نتایج اخیر ما را به این نتیجه منجر می‌کند که یکی از ذره‌ها الکترون و ‏دیگری پوزیترون است. بنابراین کوانتومهای گاما که از درون ماده می‌گذرند ‏‏(گاز در اتاقک ابر ویلسون) به جای ذره واحد جفت الکترون و پوزیترون ‏تشکیل می‌دهند. این پدیده به تشکیل جفت‌های الکترون و پوزیترون ‏معروف شده است «پدیده تولید جفت). ‏

مباحث نظری نشان می‌دهد که در نتیجه اندرکنش کوانتوم با میدان ‏الکتریکی هسته اتمی ماده این جفت تشکیل می‌شود در این فرایند ‏کوانتوم با میدان الکتریکی هسته اتمی ماده، این جفت تشکیل می‌‏شود. در این فرایند کوانتوم به جفت الکترون و پوزیترون تبدیل می‌شود و ‏هسته بدون تغییر باقی می‌ماند.‏ ‏ ‏ فرایند عکس تشکیل جفت الکترون و پوزیترون نیز کشف شده است ‏معلوم شده است که با نزدیکترکردن الکترون و پوزیترون تا فاصله‌های ‏کوتاه بر اثر نیروهای جاذبه الکترومغناطیسی ممکن است دو کوانتوم ‏تشکیل و در جهت‌های مخالف از یکدیگر دور شوند. فرایند ترکیب الکترون و ‏پوزیترون همراه با تبدیل آنها به کوانتوم‌های گاما را نابودی جفت نامیده اند. ‏نابودی به دلیل نبود پوزیترون روی زمین انتخاب شده است.

ناپایداری پوزیترون

پس از زمان کوتاهی از تشکیل آن هر پوزیترون با یک الکترون محیط ترکیب ‏می‌شود و به دو کوانتوم نور تبدیل می‌شوند. تشکیل جفت‌های الکترون و ‏پوزیترون از کوانتوم‌های و ترکیب الکترونها با پوزیترون‌ها که به تشکیل دو ‏کوانتوم منجر می‌شود اساساً فرایند جدیدی است که در آن تبدیل ‏متقابل تابش میدان الکترومغناطیسی فوتون‌های گاما) و ذرات ماده ‏الکترون و پوزیترون صورت می‌گیرد.

کشف پوزیترون اثباتی بر خواص موجی ذرات:

خواص ذرات از جنبه‌های زیادی با خواص میدان الکترومغناطیسی «نور) ‏فرق دارد. عمده‌ترین اختلاف این است که همه اجسام پیرامون ما از ذرات ‏ساخته شده‌اند ممکن است به نظر رسد که فقط نور است که عمل ‏انتقال انرژی از بعضی اجسام به بعضی دیگر را انجام می‌دهد به این دلیل ‏حتی در آغاز قرن 20 بر این باور بودند که نور (میدان الکترومغناطیسی) و ‏ماده را سد غیر قابل گذری از یکدیگر جدا کرده است. ‏

بعدا خواص ذره‌ای نور کشف شد معلوم شد که نور خواص شارش ذرات ‏فوتون‌ها را باخواص موجی همراه دارد از طرف دیگر خواص موجی که قبلاً فقط به نور اختصاص می‌دادند و ‏یکی از خصایص متمایز آن می‌شمردند، در ذرات ماده نیزکشف شد این ‏اکتشافات روی شکاف میان مفاهیم نور و ماده پل زد. مهم‌تر از این بعد از کشف تبدیل‌های متقابل نور (کوانتومهای گاما) و ذرات ‏ماده (جفتهای الکترون و پوزیترون) روشن شد که ارتباط بسیار ریشه داری ‏میان نور و ماده وجود دارد.

ذرات ماده و فوتون‌ها (میدانهای ‏الکترومغناطیسی) دو شکل مختلف ماده اند. فوتون خصایص مشترک زیادی با ذرات دیگر از خود به نمایش می‌گذارد ‏ولی ویژگی مهمی دارد و آن این است که جرم در حال سکون «جرم سکون) آن برابر ‏صفر است. فوتون همیشه با سرعت نور حرکت می‌کند هر گاه ناگزیر به ‏توقف شود (نظیر موقع جذب) دیگر نوری وجود نخواهد داشت.

چشمه‌های تولید پوزیترون:

پوزیترون را به تنهایی نمی‌توان تولید کرد زیرا ذره ناپایداری است و به سرعت ناپدید می‌شود. عموماً پوزیترون را به کمک واکنش‌های هسته‌ای بنیادی و نیز به کمک پدیده تولید جفت که در آن به همراه الکترون از نابودی یک فوتون به دست می‌آورند. سیستم آشکارسازی پوزیترون نیز همانند نحوه تولیدش به لحاظ ناپایداری پوزیترون فرایند مستقلی نیست و بیشتر از طریق پدیده نابودی جفت به وجود پوزیترون پی می‌برند.

+ نوشته شده در  سه شنبه 1 آذر1390ساعت 2:19 بعد از ظهر  توسط زهرا مختاری  | 

ایزوتوپ

یکی از فرض های بدیهی نظریه اتمی دالتون این است که هر یک از اتمهای یک عنصر از هر لحاظ (از جمله جرم) با اتمهای دیگر آن یکسان است. ولی در اوایل قرن بیستم معلوم شد که یک عنصر ممکن است شامل چند نوع اتم باشد که اختلاف آنها با یکدیگر در جرم اتمی است. فردریک سودی اصطلاح ایزوتوپ (از واژه یونانی به معنای هم مکان) را برای اتمهای یک عنصر که که از نظر جرم با یکدیگر تفاوت دارند پیشنهاد کرد.

برای بررسی ایزوتوپها از طیف نگار جرمی استفاده می شود.دستگاههایی از این نوع ابتدا توسط فرانسیس استون (1919) و آرتور دمپستر (1918) با پیروی از اصول روشهایی که جی جی تامسون در 1912 ارائه کرده بود ساخته شد.

جی جی تامسون

اگر عنصری شامل چند نوع اتم با جرمهای متفاوت (ایزوتوپها ) باشد، این تفاوت در مقادیر یونهای مثبت حاصل از این اتمها پدیدار می گردد.طیف نگار جرمی یونها را بر حسب مقادیر نسبت بار به جرم ، از یکدیگر جدا می کند، و سبب می شود که یونهای مثبت متفاوت در محلهای مختلف روی یک صفحه عکاسی اثر کند.


وقتی دستگاه کار می کند، اتمهای بخار ماده مورد مطالعه در معرض بمباران الکترونی قرار گرفته و به یونهای مثبت تبدیل می شوند.این یونها بر اثر عبور از یک میدان الکتریکی ، به قدرت چندین هزار ولت ، شتاب پیدا می کنند. اگر ولتاژ این میدان ثابت نگه داشته شود، تمام یونهایی که مقدار بار به جرم مساوی دارند، با سرعت مساوی وارد یک میدان مغناطیسی می شوند. این سرعت، مقدار بار به جرم و شدت میدا مغناطیسی، شعاع مسیر یون را در میدان مغناطیسی تعیین می کند.

اگر شدت میدان مغناطیسی و ولتاژ شتاب دهنده ثابت نگه داشته شوند، تمام یونهایی که مقدار بار به جرم مساوی دارند، در یک محل بر روی صفحه عکاسی متمرکز می شوند. این محل را می توان با تغییر پتانسیلی که موجب شتاب یونها می شود، تغییر داد. ولی یونهایی که مقدار بار به جرم متفاوت دارند در محلهای مختلف روی صفحه عکاسی متمرکز می شوند. هر گاه یک وسیله الکتریکی که شدت اشعه یونی را اندازه می گیرد، جای گزین صفحه عکاسی شود، دستگاه را طیف سنج جرمی می نامیم. با استفاده از طیف سنج جرمی می توان هم جرم اتمی دقیق ایزوتوپها و هم ترکیب ایزوتوپی عناصر (انواع ایزوتوپهای موجود و مقدار نسبی هر یک) را تعیین کرد.


ایزوتوپها، اتمهایی با عدد اتمی مساوی و عدد جرمی متفاوتند. این اتمها دارای خواص شیمیایی بسیار مشابه هم (در اغلب موارد غیر قابل تشخیص) هستند. مثلا در طبیعت دو نوع اتم کلر وجود داردکه هر دو 17 پروتون و 17 الکترون دارند ولی یکی دارای 18 نوترون و دیگری دارای 20 نوترون است. بنابراین، اختلاف ایزوتوپها در تعداد نوترونهای هسته ها آنهاست. بعضی از عناصر فقط به یک شکل ایزوتوپی در طبیعت وجود دارند(مثل سدیم، بریلیم و فلوئور). ولی اغلب عناصر بیش از یک ایزوتوپ دارند.مثلا قلع دارای ده ایزوتوپ است. اصطلاح نوکلید، به طور کلی، برای گونه های اتمی به کار می رود.

بسیاری از ایزوتوپها از ایزوتوپها رادیواکتیو هستند ، یعنی ذراتی با فرکانس بالا را از هسته (مرکز) اتمهای خود را ساطع می کنند . از آنها می توان برای دنبال کردن مسیر مواد متحرکی که از دید پنهان هستند ، مانند جریان خون در بدن یک بیمار در بیمارستان ، استفاده کرد.

جریان خون

مقدار کمی از یک ایزوتوپ رادیو اکتیو به درون جریان خون بیمار تزریق می شود . سپس مسیر آن توسط آشکارسازهای خاصی که فعالیت رادیواکتیویته را مشخص می کنند دنبال می شود . این اطلاعات به یک کامپیوتر داده می شود ، که صفحه آن هر گونه اختلالی ، مانند انعقاد خون در رگها ، را نشان می دهد . با استفاده از روشی مشابه ، می توان از ایزوتوپها برای مطالعه جریان مایعات در تاسیسات شیمیایی نیز استفاده کرد.

فرسودگی ماشین آلات

آهنگ فرسودگی ماشین آلات صنعتی را نیز می توان با استفاده از ایزوتوپها اندازه گرفت . مقادیر اندکی از ایزوتوپهای رادیواکتیو به بخشهای فلزی ماشین آلات ، مانند یاتاقانها و رینگ وپیستونها اضافه می شود . سپس سرعت فرسودگی با اندازه گرفتن رادیواکتیویته روغنی که برای روغنکاری این بخشها به کار رفته است مححاسبه می شود.

+ نوشته شده در  سه شنبه 24 آبان1390ساعت 9:14 قبل از ظهر  توسط زهرا مختاری  | 

عدد جرمی

عدد جرمی عددی صحیح می باشد که مجموع تعداد پروتون ها و نوترون های هسته یک اتم را مشخص می کند.

به عبارتی دیگر عدد جرمی عبارت است از تعداد نوکلئون های هسته اتم. عدد جرمی اتم های عناصر با یکدیگر متفاوت می باشد. اختلاف میان عدد جرمی و عدد اتمی برابر است با تعداد نوترون های آن هسته. خواص شیمیایی و فیزیکی عناصر توسط عدد اتمی و عدد جرمی مشخص می شود. تمام اتم های یک عنصر دارای عدد اتمی یکسان می باشند که این عدد اتمی، ماهیت شیمیایی عنصر را مشخص می کند. اما ممکن است اتم های یک عنصر عدد جرمی متفاوتی داشته باشند که در این حالت به آن ایزوتوب آن عنصر می گویند.

علت تفاوت عدد جرمی در اتم های یک عنصر ، تغییر تعداد نوترون های آن می باشد. پس عدد جرمی اتم های یک عنصر می تواند در خواص فیزیکی عنصر مانند : چگالی، جرم و ... تغییر ایجاد کند.

در نماد گذاری عدد جرمی را با A سمت راست و در بالا و عدد اتمی را با Z سمت راست ، پایین نماد عنصر می نویسند .

عدد جرمی بیشتر در
واکنش های هسته ای مورد تحلیل قرار می گیرد ، زیرا عناصری وجود دارند که در برخی از ایزوتوپ هایشان پایدار و در برخی دیگر فعالیت رادیواکتیو از خود نشان می دهند. مثلاً هیدروژن دارای سه ایزوتوپ ( عدد جرمی 1،2و3)می باشد که در دو ایزوتوپ 1 و2 ( پریتیم و دوتریم ) دارای هسته پایداری می باشد ، اما ایزوتوپ تریتیم ( ایزوتوپ3) دارای هسته ناپایداری می باشد .

در طبیعت ایزوتوپ های فراوانی از عناصر مختلف وجود دارند . امروزه با پیشرفت علم هسته ای ، در آزمایشگاه ها توانسته اند ایزوتوپ های جدیدی از عناصر مختلف تولید کنند بطوری برخی از آن ها در طبیعت وجود دارند.

+ نوشته شده در  سه شنبه 24 آبان1390ساعت 9:11 قبل از ظهر  توسط زهرا مختاری  | 

عدد اتمی

عدد اتمی (Z)، اصطلاحی است که در شیمی و فیزیک برای بیان تعداد پروتونهای موجود در هسته اتم به کار می‌رود. عدد اتمی سمت چپ پایین علامت اختصاری عنصر نوشته می‌شود: ۱H (هیدروژن۸O (اکسیژن۶C (کربن)

عدد اتمی اصولاً شماره محل هر اتم در جدول تناوبی می‌باشد. وقتی مندلیف، عناصر شیمیائی شناخته شده را بر اساس تشابهاتشان در شیمی مرتب کرد، متوجه شد که قرار دادن دقیق آنها بر اساس جرم اتمی، ناهماهنگیهای را بوجود می‌آورد. او متوجه شد که اگر ید و تلوریوم بر اساس جرم اتمی‌شان قرار بگیرند، ترتیبشان غلط به نظر می رسد و وقتی در جدول در جای مناسب قرار خواهند گرفت که جابجا شوند. با قرار دادن آنها بر اساس نزدیکتر بودن خواص شیمیائی، شماره آنها در جدول تناوبی، همان عدد اتمی آنها بود. به نظر می‌رسید که این عدد تقریباً با جرم اتم نسبت دارد، اما همانطور که تفاوت جرم _ خواص شیمیای نشان داد، بازتاب خاصیت دیگری به جز جرم بود.

عجیب بودن این ترتیب، بالاخره بعد از تحقیقات Henry Gwyn Jeffries Moseley در سال 1913 تشریح شد. موسلی کشف کرد که ارتباط دقیقی بین طیف بازتاب اشعه X عناصر و محل صحیح آنها در جدول تناوبی وجود دارد. بعداً نشان داده شد که عدد اتمی مساوی بار الکتریکی هسته می باشد- به عبارت دیگر تعداد پروتونها-؛ و این بار الکتریکی است که خواص شیمیائی عناصر را بوجود می‌آورد، نه جرم اتمی.
+ نوشته شده در  سه شنبه 24 آبان1390ساعت 9:8 قبل از ظهر  توسط زهرا مختاری  | 

مدل های اتمی

 

الکترونها در کره ای از بارهای مثبت پراکنده اند

 

در مدل بور تعداد الكترونهاي هر مدار ثابت از مداري به مدار ديگر تغيير مي كند

+ نوشته شده در  سه شنبه 24 آبان1390ساعت 8:49 قبل از ظهر  توسط زهرا مختاری  | 

اتم

"وقتی بحث اتم در میان باشد زبان را فقط به آن صورت میتوان به کار بردکه در شعر به کار میرود.شاعر نیز نمیخواهد وقایع را دقیق بیان کند،بلکه میخواهددر ذهن شنونده تصاویری تولید و ارتباطات ذهنی برقرار کند.نیزلبور."

یک اتم کوچکترین جزء اصلی غیر قابل تقلیل یک سیستم شیمیایی می باشد این کلمه از کلمه یونانی atomos، غیر قابل تقسیم، که از a-، بمعنی غیر، و tomos، بمعنی برش، ساخته شده است. معمولا به معنای اتم های شیمیایی یعنی اساسی ترین اجزاء مولکول ها و مواد ساده می باشد. اتم ها قابل تفکیک نیستند اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم معمولا میان 10pm تا100pm متفاوت است.

 

  مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی ماننددموکریتوس(Democritus)،لئوسیپوس((Leucippusواپیکورینز(Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 (Rudjer Boscovich)راجر بسکوویچ آنرا احیاء نمود، و بعد از آن توسط «John Dalton)جان دالتون در شیمی بکار برده شد.

راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:

Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium چاپ نمود.

براساس نظریه بوسویچ، اتمها نقاط بی اسکلتی هستند که بسته به فاصله آنها از یکدیگر، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده، استفاده نمود. در اثر تلاش «Amendo Avogadro)آمندو آواگادرو در قرن 19، دانشمندان توانستند تفاوت میان اتم ها و مولکولها را درک نمایند. در عصر مدرن اتم ها بصورت تجربی مشاهده شدند.
در آزمایش ها نیز مشخص گردید که اتمها نیز خود از ذرات کوچکتری ساخته شده اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته ( پروتونها و نوترونها)، و بقیه اتم فقط از پوسته های متموج الکترون تشکیل شده است. معمولا اتم های با تعداد مساوی الکترون و پروتون، از نظر الکتریکی خنثی هستند.
اتم ها عموما بر حسب عدد اتمی که متناسب با تعداد پروتونهای آن اتم می باشد، طبقه بندی می شوند. برای مثال، اتم های کربن اتم هایی هستند که دارای شش پروتون میباشند. تمام اتمهای با عدد اتمی مشابه، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می دهند. انواع گوناگون اتمها در جدول تناوبی لیست شده اند.

اتمهای دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (به علت تعداد متفاوت نوترونهای آنها) ایزوتوپ نامیده می شوند.

ساده ترین اتم، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می باشد. این اتم در بررسی موضوعات علمی، خصوصا در اوایل شکل گیری نظریه کوانتوم، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم ها بطور عمده ای وابسته به اثرات متقابل میان الکترونهای آن می باشد. خصوصا الکترونهایی که در خارجی ترین لایه اتمی قرار دارند بنام الکترونهای ظرفیتی، بیشترین اثر را در واکنشهای شیمیایی نشان می دهند. الکترونهای مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر میباشند ولی بعلت وجود بار مثبت هسته اتمی، نقش ثانویه دارد.

اتم ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند، لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتمهای مجاور و یا با جداکردن کامل الکترونها از اتمهای دیگر فراهم میشود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کوالانسی میان دو اتم تشکیل می گردد. پیوندهای کوالانسی قویترین نوع پیوندهای اتمی می باشند.

هنگامیکه بوسیله اتم، یک یا چند الکترون از یک اتم دیگر جدا می گردد، یونها ایجاد می شوند. یونها اتم هایی هستند که بعلت عدم تساوی تعداد پروتو نها و الکترونها، دارای بار الکتریکی ویژه می شوند. یونهایی که الکترون(ها) را بر می دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون(ها) را از دست می دهد کاتیون (cation) نامیده شده و بار مثبت دارد. کاتیونها و آنیونها بعلت نیروی کولمبیک(coulombic) میان بارهای مثبت و منفی، یکدیگر را جذب می نمایند. این جذب پیوند یونی نامیده می شود و از پیوند کوالانسی ضعیفتر است.

همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترونها بطور یکسان میان اتمها به اشتراک گذارده می شود، درحالیکه پیوند یونی در حالی ایجاد میگردد که الکترون ها کاملا در انحصار آنیون قرار میگیرند. بجز در موارد محدودی از حالتهای خیلی نادر، هیچکدام از این توصیف ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کوالانسی، الکترونها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم های با بار الکتریکی منفیتر می کنند، که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می گردد. بطور مشابهی، در پیوندهای یونی الکترونها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت تر می چرخند، که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می گردد.

+ نوشته شده در  سه شنبه 24 آبان1390ساعت 8:41 قبل از ظهر  توسط زهرا مختاری  |